Tag Archives: Weinberg

LFTR New Posts nuclear thorium uranium

Public Comment to BRC by Mike Conley

Mike Conley is a writer from L.A., California. He is working on a novel. Has a book being published and working on a script for a documentary. He also attended the Blue Ribbon Commission hearing on May 13th the same week and same city that hosted the third Thorium Energy Alliance Conference. Washington, D.C.
They only give each person three minutes so he was only able to read the first page. He was one of five people who had a statement to support the Liquid Fluoride Thorium Reactor which was originally called a Thorium Molten Salt Breeder Reactor. Keep in mind that any details outlined about the actual design is purely a speculation and broadly based on the original designs from the 1960s by Alvin Weinberg’s team at Oak Ridge National Laboratory. LFTR has flexibility of function and application.

The Thorium Paradigm
The problem is with the reactors we’ve been using to produce it. If the reactors at Fukushima had been Liquid Fluoride Thorium Reactors (LFTRs) they wouldn’t have had a disaster on their hands. 

  1. Liquid-fuel reactor technology was successfully developed at Oak Ridge National Labs in the 1960s. Although the test reactor worked flawlessly, the project was shelved, a victim of Cold War strategy. But LFTRs have been gathering a lot of attention lately, particularly since the tragic events in Japan.
  2. A LFTR is a completely different type of reactor. For one thing, it can’t melt down. It’s physically impossible. And since it’s air-cooled, it doesn’t have to be located near the shore. It can even be placed in an underground vault. A tsunami would roll right over it, like a truck over a manhole cover.
  3. Imagine a kettle of lava that never boils. A LFTR uses liquid fuel.nuclear material dissolved in molten fluoride salt. Conventional reactors are atomic pressure cookers, using solid fuel rods to super-heat water. That means the constant danger of high-pressure ruptures and steam leaks. But liquid fuel can always expand and cool off.
  4. LFTRs don’t even use water. Instead, they heat a common gas like CO2 to spin a turbine for generating power. So if a LFTR does leak, it’s not a catastrophe. Just like lava, the molten salt immediately cools off, quickly becoming an inert lump of rock.
  5. LFTRs burn Thorium, a mildly radioactive material as common as tin and found all over the world. We’ve already mined enough raw Thorium to power the country for 400 years. It’s the waste at our Rare Earth Element mines.
  6. LFTRs consume fuel so efficiently that they can even use the spent fuel from other reactors, while producing a miniscule amount of waste themselves. In fact, the waste from a LFTR is virtually harmless in just 300 years. (No, that’s not a typo.) Yucca Mountain is obsolete. So are Uranium reactors.
  7. LFTR technology has been sitting on the shelf at Oak Ridge for over forty years. But now the manuals are dusted off, and a dedicated group of nuclear industry outsiders is ready to build another test reactor and give it a go. Will it work. If it doesn’t, we’ll have one more reactor to retire.
    But if it does work and there is every reason to believe that it will the LFTR will launch a new American paradigm of clean, cheap, safe and abundant energy.
    Let’s build one and see!

A Uranium reactor is an atomic pressure-cooker – it works just fine until it pops a gasket. Then you’ve got a mess on your hands. Even when it works properly, it wastes 95% of its fuel, making another mess. And the same procedure for making that fuel is used to make nuclear weapons. Is that any way to power a planet.

A Liquid Fluoride Thorium Reactor (LFTR, pronounced “lifter” ) is a completely different approach to generating power, with none of the problems inherent in Uranium reactors and several unique advantages. If the reactors at Fukushima had been LFTRs, Fukushima would never have happened.

The Molten Salt Reactor was the precursor to the LFTR. Developed at Oak Ridge National Labs in the sixties, the MSR performed flawlessly for 20,000 hours. But in spite of its superior design and stellar performance, the program was cancelled – a victim of professional rivalry, personality conflicts, and Cold War strategy.

LFTR technology has literally been sitting on the shelf for over forty years, but it’s been gathering a lot of keen attention lately. Because if LFTRs perform as predicted (and there is a wealth of evidence to suggest that they will) they will go a long way toward resolving the four main problems that everyone has with nuclear energy – Waste, Safety, Proliferation, and Cost.

WASTE: Yucca Mountain is obsolete. Why. Because LFTRs will eat nuclear waste for lunch. They’re designed to burn fuel so efficiently, that they can also consume the spent fuel that’s wasted by Uranium reactors. LFTRs will also be able to consume the cores of dismantled nuclear weapons.

No reactor is waste-free, but a LFTR’s waste will be miniscule. For a LFTR big enough to power a city of one million, the yearly long-term waste would be the size of a basketball, and becomes virtually harmless in just 300 years.

No, that’s not a typo. That’s how clean a LFTR will run. Its main fuel will be Thorium, a mildly radioactive element found all over the world. We have thousands of tons of it already dug up – it’s in the slag piles at our Rare Earth Element mines. (“REEs” are typically found with thorium ore.)
A 1-gigawatt LFTR, big enough to power a city of one million, will run on one ton of pure Thorium a year. The current price for a ton is $107,000 (that’s not a typo, either.) At the end of each year, 1,660 pounds of that ton will be “short-term” waste, meaning it’s virtually harmless in one year. The other 340 lbs (the size of a basketball) will take while longer to mellow out.

SAFETY: Imagine a kettle of lava that simmers but never boils. It’s super-hot, but it’s not under pressure. A LFTR is essentially a kettle of atomic lava. The analogy is accurate – Thorium and Uranium reactions are what keep the earth’s core molten. In a LFTR, Thorium is dissolved in molten (liquefied) fluoride salt. That’s why the Molten Salt Reactor is now called a Liquid Fluoride Thorium Reactor.

If this “lava” ever leaks out (actually, it looks and flows just like green dish soap) there’s no explosion, because there’s nothing around the power plant for the molten salt to react with – LFTRs don’t use water to keep cool, or make steam to spin a turbine. They heat a common gas like CO2 instead.

Since the liquid fuel is never under pressure, a leak would simply “pool and cool” just like lava, quickly forming a blob of solid rock on the reactor room floor. If it spilled into a flooded reactor room, it would behave like the lava flows in Hawaii. A bit of steam would billow off the cooling blob of salt, and that would be it.

Only two percent of the salt mixture is the actual radioactive fuel, and every atom of atomic fuel is chemically bonded to the salt. There are no radioactive particles floating around inside a LFTR, ready to escape. Every particle is bonded to the salt itself, and stays that way until it is burned as fuel. The big problem at Fukushima wasn’t radioactive material such as Cesium leaking out of the reactors. The big problem was that it leaked out and spread into the environment. But if a LFTR leaked any Cesium at all, it would be trace amounts of Cesium Fluoride locked into the fluoride salt. Liquid fuel solves a crucial problem of environmental safety.

Once the salt has cooled, it’s an inert radioactive blob with the consistency of cast iron, and dissolves in water very, very slowly. In fact, the minerals in both fresh and salt water would form a protective crust over the blob, enhancing its ability to withhold contaminants from the environment. So if the reactor room were flooded,
by a tsunami or a hurricane or even sabotage, the amount of material transferred to the environment would be negligible.

Liquid fuel is stable stuff. Below 450°C (about 750°F) it’s just a lump of rock, and can be broken up and collected by robots or other remote machinery. A year after the spill, it can be manually recovered by workers in radiation suits. Like any nuclear fuel, it’s dangerous. But at least it’ll stay put until you can clean it up.

A LFTR will naturally regulate its own temperature, but a Uranium reactor will naturally overheat, unless it’s held back by a robust cooling system. Solid fuel rods get hot, and they also heat each other up, which is a good thing, but they can’t expand or move away from each other to cool themselves off. For a lot of technical reasons, the coolant of choice is super-heated water, which stays liquid as long as it’s kept under pressure. Hence the term “atomic pressure cooker.”

In the partial meltdown at Three Mile Island in 1979, the cooling system failed for a mere ten seconds. That’s all it took. At Fukushima, all the control rods dropped the moment the earthquake hit. Which was good; that stopped the fission process. But the fuel rods were still red hot, and they were still tightly packed together. And, there was no electric power to run the cooling system. So when the tsunami flooded the backup generators, everything went to hell in a hand basket.

Nuclear power is wonderful stuff, but after a series of spectacular near misses and disasters, a lot of people have written off Uranium reactors as accidents waiting to happen. The numbers on the dice are too big, they’ll tell you. The risks are too great. They’ve had it up to here with nuclear power…

But nuclear power isn’t the problem. The problem is with the reactors
we’ve been using to produce it.

LFTRs are completely different. For one thing, they can’t melt down.
Ever. The reason is simple: How do you melt a liquid. Solid fluoride salt melts
at 450°C. With a full load of atomic material, the temperature rises to about 700°C (1,300°F.) If the liquid fuel starts to overheat, it expands, which separates the radioactive
particles and slows the fission process, cooling the molten salt back down again.

This completely eliminates the need for control rods and a cooling system, as well as all of the problems, costs, and risks associated with a pressurized light water reactor. It also entirely eliminates any possibility of a meltdown. Better yet, the fuel will be piped through a processing unit, where the contaminants that spoil solid fuel rods are easily removed. This increases the fuel-burning efficiency of a LFTR to 99%, which greatly reduces the volume and the radioactivity of its waste.

Liquid fuel changes everything.

A LFTR never operates under pressure because even with a full load of nuclear material, the molten salt is still more than 500°C below its boiling point. And if it ever does start to get too hot, a freeze plug of solid salt in a drainpipe below the reactor will melt away. The fuel will empty into a large holding tank and solidify.

On Friday afternoons at Oak Ridge, the research scientists would switch off a common household fan that cooled the freeze plug. The hot salt above the plug would melt it, and the fuel would drain out of the reactor by gravity. On Monday mornings, they would switch on the heating coils and re-melt the fuel, then pump it back into the reactor and turn on the freeze plug fan. Even Homer Simpson couldn’t screw that up. For five years, the reactor practically ran itself. They used to joke that the biggest problem they had was finding something to do.

Passive safety isn’t just built into the LFTR; it’s built into the actual fuel itself. The genius of liquid fuel is that the stuff won’t even work unless it’s held within the confined space of a reactor. In a Uranium reactor, the solid fuel rods keep radiating heat even when the control rods are dropped. The cooling system never rests. But when a LFTR shuts down, the fuel shuts down and sleeps like a rock.

Because of the constant and absolutely critical need for cooling, all Uranium reactors are located near a large body of water. It’s a tragedy that some were installed near the seashore, in the most earthquake-prone nation in the world, the very country that coined the word tsunami. But when you’re a small, crowded island nation hungry for carbon-free energy, you don’t have much of a choice…

Until now. Because LFTRs are air-cooled. That changes everything as well. Because that means they can be installed anywhere. They can even be placed in underground vaults to ward off an attack or a natural disaster. If a vault is near the ocean, a tsunami would roll right over it, like a truck over a manhole cover.

PROLIFERATION: Any rogue nation can build a 1940s-style graphite pile reactor and make the Plutonium for a bomb. That’s what North Korea did. Or they can use centrifuges to purify Uranium for a bomb. That’s probably what Iran is doing. Or, with a lot of expense and difficulty, they can convert a Uranium power reactor into a Plutonium breeder. The genie has been out of the bottle for over sixty years.

LFTRs convert Thorium into Uranium-233, an incredibly nasty substance. It’s an efficient, hot-burning reactor fuel, but it’s a very problematic weapons material. By contrast, U-235 and Pu-239 are very well behaved substances, and can be easily worked with in the lab or the factory. Out of the tens of thousands of nuclear weapons that were ever produced, the U.S. military built and tested only one U-233 “ device.” It was a partial fizzle, and we promptly abandoned the idea.

Even though LFTRs and LFTR fuel will be “denatured” to prevent weapons production, a rogue nation could possibly get around the fix and start a U-233 bomb program. But they’d have to start from scratch. There’s a wealth of information about U-235 and U-239 weapon design, and several experienced scientists could probably be recruited. But making a U-233 bomb is a lost art.

So, yes, in theory, you could make a bomb with a LFTR. But the development of a workable device would be an expensive and painstaking affair. Even though LFTRs won’t be “bomb-proof” per se, Uranium and Plutonium technology is very well known, thoroughly proven, and fully developed. So why reinvent The Bomb.

One last point: Nuclear weapons are not dependent on nuclear power. Even if every commercial power reactor in the world were taken out of service, that still wouldn’t stop the bad guys from pursuing nuclear weapons. North Korea developed the bomb without generating a single watt of nuclear power.

COST: The cost of a nuclear power plant is largely determined by four elements: The reactor itself; the structure that contains it; the inspection process; and the lawsuits that are piled on the project.

This last element adds an enormous amount of time and money to the endeavor, which raises utility rates and turns off investors and insurance firms and voters. So a rational comparison can only be made with the first two elements – the cost of the reactor and the cost of the containment structure.

The inspection process varies, depending on which reactor technology is used, and a Uranium reactor’s custom-made high-pressure systems require a bewildering thicket of inspections, tests, and reports. You’d think they were trying to go to the moon.

 

But LFTRs are an entirely different technology. In fact, it’s a lot more like high-temperature plumbing than nuclear physics. And because molten salt sheds heat quite easily, an elaborate cooling system isn’t even needed. A simple radiator will suffice.

Since LFTRs don’t operate under pressure, high-strength valves and fittings and high-pressure pipes aren’t needed, either. Off-the-shelf parts will do. Back-up generators, emergency cooling systems, control rod mechanisms, spent fuel storage pools, the crane for replacing fuel rods, the reactor pressure vessel, the airtight containment dome – all of these pricey items and more are eliminated.

For various reasons, every Uranium power reactor in America was designed and built from scratch, which significantly added to their build time as well as their cost. The plans alone would often exceed $100 Million in today’s dollars.

But LFTRs will be small and standardized, allowing them to be mass-produced in factories and shipped by rail. Their low-pressure components will be much easier to assemble, allowing for faster and simplified inspection. LFTRs will be modular, so a power plant will be able to grow along with the city it serves. All these factors and more will combine to produce a trickle-down effect, greatly reducing the complexity, cost, size, and build time of each project.

The current estimate for 1-gigawatt Thorium power plant is somewhere in the neighborhood of $2 Billion. That makes Thorium competitive with coal.

CONCLUSION: Liquid fuel is the killer app of nuclear power. It’s a whole new ball game. In fact, LFTRs could even replace the furnaces of our existing fossil fuel power plants, including coal. (Don’t get me started about coal…) LFTRs will provide carbon-free power wherever it’s needed, 24/7/365.

We’ve already mined enough fuel for over 400 years. They’ll be mass-produced right here in America, providing plenty of good jobs, and they’ll get us off of foreign oil and domestic natural gas, and even King Coal, by providing us with all the safe, clean energy we need.

Will they work as promised? Let’s build one and see. Power to the Planet!

Mike Conley Los Angeles p.s.

One more thing: Last fall, a delegation from China visited Oak Ridge National Labs. When they returned home, they announced that they would be embarking on an aggressive Molten Salt Reactor program, and would be patenting everything they can think of along the way. The Chinese are eating our lunch again, and using our own damn recipe. If this isn’t a Sputnik Moment, then I don’t know what is.

[I recall he did improvise a few words at the end in regard to building.the LFTR: Let us build one even if we make total fools of our selves as if to say "What if we're right?"]

 

 

“THE THORIUM PARADIGM” soon to be a one-hour documentary
from B2MR PRODUCTIONS

Executive Producer: James Blakeley III

310-283-8632

james.blakeley@yahoo.com

Producer: Marina Martins

310-666-9213

marina.uig@gmail.com

Advocates Charles Barton education Kirk Sorensen LFTR nuclear nuclear plants reprocessing thorium

Hey Utah, China knows Weinberg was right about TMSR's. No Water Needed!

Utah needs water for nuclear power but water is scarce. (see Article in the Salt Lake tribune) The only alternative besides a LFTR is Natural Gas.

What’s that? A “LiFTer”? Huh? A LFTR is a Molten Salt Reactor that is a Fourth Generation Reactor yet it’s origins are predecessors of our current reactors. Why does China and Japan want them? China has started their own program as of last month. Japan will likely follow this year. Why? Because they are extremely adaptable and useful for all kinds of applications.  Besides, thorium is plentiful and the reactors emit zero carbon dioxide. Natural gas emits how much CO2? We know that it’s a lot.

The TMSR’s are cleaner and more fuel efficient and create almost no nuclear waste. Oh, and did I mention that it can also reprocess used fuel very effectively and that they are less expensive to build than LWR’s because they don’t need a dome containment.  Who invented the TMSR? Weinberg!!! Alvin Weinberg. You know who invented the light bulb. You know who invented the telephone. But you don’t know who invented the LWR. The basic principal originated with guess who? Alvin Weinberg!!! The 104 reactors (soon to be 105 if things work out) are all based on Alvin Weinberg’s design. Is his name in your child’s history book or science book? No.

These facts have been stated over and over among the various websites who advocate the Thorium Molten Salt Reactor and it’s successor the LFTR. China says it might take them 20 years but experts here say it could be done in less than 10 years maybe even 5 years. What’s stopping us? Just a few regulatory and licensing hurdles and an entourage of  “do gooder” antinuclear groups who, like Oprah Winfrey’s audience, judges before they know the facts. Sorry Oprah. I guess you deserve some credit for recognizing they exist. I guess Sarah Palin, Rush Limbaugh and Glenn Beck also count on the gullible masses.

LFTR’s don’t use water. They don’t need pressurized containment. They can be shut down very quickly.  What’s the old KnowItAll Nuclear establishment’s excuse? The graphite cracks. Hmm that’s a 50 year old problem. Material knowledge has grown immensely in 50 years. There are a whole group of smart guys who believe in this technology. You owe it to Alvin Weinberg. You owe it to the American people. You can’t just let this huge body of knowledge stay on the shelves of some library at ORNL.

“A single thorium mine in Idaho could produce 4500 MT of fuel per year. The current US energy load could be supplied by 400MT. We also ALREADY have 3200 MT of it stored underground in a Nevada Test Site from past efforts.”

It’s taken almost 30 years for us to realize that we’ve fallen behind in the energy race. We still are a highly resourceful people. The next wave of reactors really should be LFTR’s but how about building just one to start. What better opportunity than a place that is short of water. Ironically the 1st reactor in thirty years will start in 2012 will still be based on the LWR’s. And in that time France built their fleet to handle 80% of their electricity.  It’s not the law enforcers who are to blame it’s the model of regulation, licensing and punitive rules for the unfair advantage they have over fossil fuels.

Even if the country does not embrace LFTR’s I am still pronuclear. The developments over the last 30 years have been huge in improvements to LWR’s and HWR’s (Canada’s contribution).

You can look around here or go to http://energyfromthorium.com or http://nucleargreen.blogspot.com or check out my blog list for more information.

Advocates Kirk Sorensen LFTR New Posts nuclear nuclear plants thorium

Thorium MSR in China

Kirk Sorensen’s EFT page: Thorium Molten Salt Reactor (TMSR) is now being developed in China

and here is Charles Barton’s Post China starts LFTR Development Project

I’m sure Kirk Sorensen and Charles Barton had mixed emotions when they learned that China was building a TMSR. Details of the design are not available. For newcomers, this is a big deal because the LFTR is a TMSR. TMSR is a more general term.
So it’s great that somebody recognizes this technology as promising. It’s sad that the US, the place that gave birth to the first TMSR, has not revived the research to commercialize them. Alvin Weinberg must be turning in his grave.

New Posts nuclear thorium

Robert Hargraves at Blue Ribbon Commission Aug 30 2010

“For an overview of a two fluid liquid fluoride thorium molten salt reactor see my ten minute presentation before the Blue Ribbon Commission on America’s nuclear future. Click on the Aug 30 date and scroll down to find this.”

http://brc.gov

Robert provided a much needed perspective and if you had not been there Rod Adams and Kirk Sorensen may have needed to alter their presentations.

I’m adding the link to Robert Hargrave’s text PDF

Also One Page Summary

Paper – Aim High is a Project with Lofty Goals

LFTR New Posts nuclear thorium

Alvin Weinberg

Forgotten or unknown to the masses Alvin Weinberg designed the Light Water Reactor (the 104 Nuclear reactors across the US) and was one of the first to warn about Climate Change. So when things get worse there will be a push for new Nuclear Reactor designs and the reactor design that Weinberg and his team created at ORNL who had assistance from Eugene Wigner among others, and was his first choice till his death in 2003,  was the Molten Salt Reactor . The “Thorium Molten Salt Reactor” is technically a French naming  labeled as such in the 1990’s but the first experiment that was run successfully 30 years earlier, for over 10 years, was the “Molten Salt Reactor Experiment” (MSRE) which also used Thorium. The latest molten salt reactor design is largely based on Weinberg’s design and that is the “Liquid Fluoride Thorium Reactor” (LFTR) coined by Kirk Sorensen.  Read more about LFTR here.

Also read Charles Barton’s

http://nucleargreen.blogspot.com/2010/08/weinberg-on-nuclear-safety.html

http://nucleargreen.blogspot.com/2010/08/faustian-bargains-weinberg-or-lovins.html

Letter Templates New Posts nuclear thorium

If you knew nuclear like I know nuclear.

Here’s another one I wrote Last Year

For some people nuclear anything leads to nuclear danger. We are learning that some great benefits have been discovered from the knowledge of elements that are radioactive and the promises can’t be ignored. Is there any sense to equating nuclear energy research and development with nuclear bombs.

What does make sense is to have the awareness of what is good for the current state of proliferation and what is not.

R&D into nuclear energy has been held in limbo by the constant need for the government to reassure the protesters and general public fears that it has their best interests at heart.

As tempting as it is to blame some American presidents for the current state of affairs it really solves very little to finger point. The best any of us can do to allow a positive outcome is to educate our selves about what is good and what is bad about nuclear development.

Some have argued that reducing the number of nuclear weapons will help reduce risk which sounds logical. What steps would be required for such a strategy? Unfortunately the presence of nuclear material from dismanteled nuclear weapons and so-called “nuclear waste” from both the preparation for weapons material and the bi-products of creating nuclear power is an important reality to understand and solve. These substances will not vanish quickly without new technology and as long as they remain they are a potential threat by there very existence.

This is where the resurrection of the Molten Salt Reactor comes into play.
The radioactive material from dismantled bombs and the radio active material from the nuclear waste from power plants can be eliminated through the use of this technology. The success rate of the Molten Salt Reactor is a rare story indeed. It’s brief period of experimentation proved to be a major accomplishment. Because of the relative complexity of the science and that this provides the perfect cloak to hide behind. Molten Salt Reactors were banished like heretics from christianity.

New Posts nuclear thorium

FUJI Thorium MSR Reactor back again

The Japanese have recently announced  (Jul 8th, 2010)  their intention to create a Thorium Molten Salt Reactor     http://www.itheo.org/articles/itheo-presents-ithems

They need 300 million $US to get started. They have had interest in an MSR since the 1990’s

This seems a small price to start an important first modern Thorium-MSR commercial reactor.

It would save American R & D if the US invested in this.

Investors, potential partners and suppliers can meet with IThEMS at
ThEC2010 in London England Oct 17-20th where they will present their
technology and business or contact IThEO at info@itheo.org
or IThEMS at inquiry@ithems.jp

IThEMS, International Thorium & Molten-Salt Technology Inc.

See the planning stages involved for the FUJI-Mini Reactor

It looks like this Japanese company is doing it in stages.
http://www.ithems.jp/e_basic_design_1.html
http://www.ithems.jp/e_basic_design_2.html
http://www.ithems.jp/e_basic_design_3.html
to be completed in less than ten years

Letter Templates LFTR New Posts nuclear thorium

July 4th Letter to Obama on Nuclear Energy Falls Short

NuclearGreen’s Charles Barton writing from his hospital bed

The letter according to Charles Barton ignores the achievements of Wigner and Weinberg and focuses on their authors perceived better choice to winning over government dollars for projects supporting reactors for reprocessing.  The trouble is they leave out the best choice according to many and that is the LFTR.

Read to the end. Rod Adams, Kirk Sorensen and Robert Hargraves have comments added

New Posts nuclear thorium

THORIUM: A Tipping Point in History

This blog form Environauts.com covers background about how Thorium is getting a second chance, how it almost got passed over as an energy source. Sometimes profit and fear reinforce each other even at the expense of what’s good for the planet.

THORIUM: A Tipping Point in History


From the same blog more details about Thorium and how Thorium is the most “misunderstood and overlooked element on the Periodic Table”

Unlimited Energy from the Past…

LFTR New Posts nuclear thorium

Interdependent Reactors Are the Fastest Route to 2020 Energy Independence says Kirk Sorensen

Slightly Condensed version of Kirk Sorensen’s talk at the Thorium Energy Alliance Conference
(After careful reading I found it difficult to shorten – The parallel interdependent reactors is the most interesting and the fact that meeting a 2020 date by doing so is very exciting given that Bill Gates has a much longer deadline with his 40 years for TWR. This is an excellent plan Kirk.)
See the full text here:

As we have for most of human history, we stand at the edge of an energy crisis. The methods by which we have powered our society have come to a limit, and a change is necessary. Seven hundred years ago in England, the energy crisis was caused by massive deforestation and a lack of firewood. It was solved by turning to coal, a filthy, inexpensive, and abundant fuel. But as the skies darkened over the cities of England and the United States, people turned to gas and oil to improve the situation. Now all of these fossil fuels will have to be replaced due to the environmental damage they cause and the social, political, and financial instability they engender.

Fortunately, in 1939, humanity discovered the physical process that would allow us to replace fossil fuels forever—the fission of the heavy elements known as actinides. By 1944, we realized there were actually three different ways to use this physical process to provide us the energy we need. One of these approaches was relatively “easy”. It involved the use of a substance almost as rare as gold—uranium-235. Even back then, physicists and scientists realized that uranium-235 fission was not going to be a long-term energy solution. There simply wasn’t enough of it. The other two approaches were significantly more difficult but promised essentially unlimited amounts of energy. One was to fission the common isotope of uranium, uranium-238, and the other was to fission thorium, which was three times more common than uranium itself.

In one of the great historical tragedies of human history, this marvelous new energy source was discovered during a time of war, and was immediately put to work for destructive means. This colored and affected forever how world leaders and the public would view this incredible discovery, and is a legacy that we find ourselves, even seventy years later, still trying to move past.

We have taken the “easy” route. We have used nuclear energy based primarily on the fission of this rare-as-gold isotope of uranium. … We still live on a planet where most of our energy comes from fossil fuels. Perhaps even more troubling, most of our fellow citizens and leaders don’t even know about the other two approaches. They assume that “nuclear energy” means one and only one thing—making energy from nuclear fission the same way we have made it for sixty years.

…While many of us know that such events (like chernobyl, etc) are not possible in well-built, Western-style reactors, it takes a few moments to explain the defense-in-depth approach of our reactors to a regular person, while it only takes a fraction of a second for anti-nuclear forces to say “Chernobyl!” and stoke fear.

Another potent source of anti-nuclear anger surrounds the issue of so-called “nuclear waste”. … I still find over and over again that spent nuclear fuel is demonized as a toxic, dangerous, poisonous substance that will last forever and is intractable to solution.

Such a statement, is of course, untrue, but it is politically and culturally potent.

A slightly more sophisticated attack on nuclear power has to do with the costs involved in building a conventional nuclear power plant. They’re high. Really high. And once an organization commits to build one their uncertainty levels are high. … endangered species … Some anti-nuclear group might rile up a local community or a powerful politician. Fossil fuel interests threatened by a loss of market share might quietly fund all manner of subversive efforts. …or public opinion might have a decided shift during the construction period. All of these factors combine to give pause to those who might consider building conventional nuclear reactors.

Several additional factors have come into play … Obama administration has cancelled the US effort to built a permanent spent-nuclear-fuel repository at Yucca Mountain. … Obama and Bush administrations have made efforts to provide loan guarantees to new nuclear power plants. … the severe economic downturn … and a general reduction in the appetite for energy that has led to temporarily lower fuel costs. Natural gas and oil seem cheap—for the moment.

All of these factors combine together to create what I like to think of as “boundary conditions”. …

…First, we can’t keep using fossil fuels. They’re destroying our environment and exporting wealth away from our country. But those who control the fossil fuels have vast amounts of power and money and can make life very difficult for those of us trying to establish a new energy source.

Second, cancelling Yucca Mountain, continuing to operate our 100-odd reactors, and building new reactors in the future mean that we have to do something about what the public calls “nuclear waste”. And I think it has to be a lot more than just education, although I think that’s an important part of it. We need to address the problem in a satisfactory way. I know we won’t satisfy everyone, but we need to satisfy most of the public.

Third, we have to do something about the cost of bringing new nuclear energy online. The old way is slow and expensive. We need a new way that’s better, safer, simpler, and costs less. Fortunately all of these things don’t have to be mutually exclusive.

Now what nuclear approach should we take?

…do things the way we do today—building more light-water reactors that use uranium fuel? … To get off coal and fossil fuels, and to replace the transportation energy we currently get from oil will take about … about ten times what we’re getting from nuclear today. … We’re not even mining uranium anymore in the United States. We import all of our uranium. And considering that Yucca Mountain, which we’re not even going to build anymore, was politically limited to about 70,000 tonnes of spent nuclear fuel, that would mean that we would be filling up a Yucca Mountain-equivalent every two years. It’s pretty hard to imagine pulling off such a political solution in today’s or even tomorrow’s environment.

What if we reprocessed the spent nuclear fuel? We could recover the unburned plutonium and mix it with fresh uranium to provide fuel for nuclear reactors. Well, that doesn’t change the story too much either, since it would take about two or three nuclear reactors’ worth of spent fuel to supply another one. The basic problem there is that each current nuclear reactor isn’t producing enough new fissile material to compensate for that which is being consumed.

What about fast reactors? These are reactors that don’t slow down their neutrons so that they can get better fuel efficiency and fuel conversion. Fast reactors theoretically could fit the bill. If we assume that each fast reactor could consume about half of the energy in uranium then a thousand fast reactors would use about 2000 tonnes of uranium each year, and we have lots of uranium sitting around at enrichment plants. But there’s a few other issues of concern with the fast reactors. … We would then need each of those … fast reactors to breed lots of extra plutonium so as to be able to start up more fast reactors, or we would need to enrich a lot of uranium to start fast breeder reactors. We would also need to build the reprocessing and fuel fabrication facilities to make all this happen. It’s possible, but it’s going to be very expensive.

Then there’s thorium. Thorium has a special property—it breeds to uranium-233 and uranium-233 fissions and gives off 2 or 3 neutrons that enable it to keep converting more thorium into uranium-233 and burning it. This means that once we start a thorium reactor we can keep it going indefinitely just by adding thorium. But how do we get it started? How much uranium-233 do we need? Well, most of the studies done by Oak Ridge in the 1960s indicated that we could start a one-gigawatt thorium reactor with about 1 tonne of uranium-233. How much do we have right now? About one tonne. So we could only start one reactor, right? With uranium-233, yes, but we need to go about quickly “converting” our fissile materials into uranium-233 so we can start more.

Why does it only take one tonne of uranium-233 to start a thorium reactor but it takes 10-15 tonnes of plutonium to start a fast breeder? Here’s why—things look different when you’re a slowed-down neutron versus a fast neutron. When you’re a fast neutron all of this fuel looks really small to you, and you have a lot less probability of causing fission. So you need a lot more fuel to insure that you get enough collisions with fuel to generate the energy you need. On the other hand, when you’re a slowed-down neutron each fuel nucleus looks a lot bigger and you have a much better chance of causing a fission. So having slowed-down neutrons makes your fuel go a lot further than using fast neutrons. This is the basic reason why a thorium reactor with slowed-down neutrons can start with a lot less fuel for a given power rating than a fast reactor with fast neutrons. Each little bit of fuel counts for a lot more in a reactor with slowed-down neutrons.

We don’t have to limit ourselves to just uranium-233 to start these thorium reactors. We can use the highly-enriched uranium that we’re recovering from all of the nuclear weapons that we are decommissioning to help us. We can use the plutonium we’re recovering from those weapons. We can use the plutonium that’s been generated in our reactors over the last sixty years to help us. By using slowed-down neutrons and thorium, the startup power of this fuel is magnified by about 1000 to 1500% over a fast reactor.

So what should we do first? Well, the first thing we should do is stop the Department of Energy’s effort to destroy the one tonne of uranium-233 that we already have. They don’t think that that uranium-233 has any value to their mission and are going to spend $500M to mix it with uranium-238 and throw it away in the desert. That’s a bad idea. We’re going to need that one tonne and a whole lot more.

The next step is to get going on the research and development of the liquid-fluoride thorium reactor. This is the machine that can burn thorium as a fuel and only needs about a tonne of U-233 or other fissile material to start it up. The US hasn’t invested any money to develop LFTR since 1974, the year I was born. Other countries are making investments. We need to get going before we get completely left behind on something that we invented.

At our enrichment plants around this country, we have 470,000 metric tonnes of depleted uranium hexafluoride. That’s a uranium atom with six fluorine atoms around it. We need to get that fluorine and convert the uranium into something that is chemically stable and can be buried. Uranium oxide is what it was when we dug it out of the earth, and that’s what we need to turn it back into. Each time we do this we will free up six atoms of fluorine that we will need for the rest of our plan. That means that that 470,000 tonnes of uranium hexafluoride will be converted into 360,000 tonnes of uranium oxide and 150,000 tonnes of fluorine.

Next we use some of that fluorine, about 30% of it, to fluorinate all of the spent nuclear fuel we’ve already generated from running reactors. 95% of the spent nuclear fuel is uranium oxide and it will be converted to uranium hexafluoride, which is exactly the form we need it in for going to an enrichment plant. So we could go ahead and send it to an enrichment plant and use it that way if we so desire. I’m more interested in the other 5% of what’s in the spent nuclear fuel. 1% is plutonium, americium, neptunium, and other actinides that are called “transuranics”. These are the higher actinides that are generated when uranium absorbs a neutron and doesn’t fission. These are also the substances that give planners such headaches when they think about building places like Yucca Mountain, because they are radioactive for tens to hundreds of thousands of years and comprise most of the long-term trouble. The other 4% are fission products, most of which are already nuclear-stable and could be partitioned and sold for the valuable materials in them, like neodymium and xenon gas.

With the transuranic fluorides we recover, we have to destroy them through fission. Waiting tens of thousands of years for them to decay isn’t the right approach. We have to put them in a reactor and burn them up in fission. What’s the right kind of reactor to do this? I think it’s a fast reactor, but not the kind of fast reactors we generally hear about these days. I think it’s a fast reactor that is a cousin to the liquid-fluoride thorium reactor, except it will be one that will use liquid-chloride salts that are chemically stable as a fuel and coolant, not the liquid-sodium-metal that is currently proposed. Again, just like other fast reactors it will take 5-10 tonnes of these transuranics to produce a gigawatt of power. So what have we bought by this approach? Just this—in these liquid-chloride reactors we will jacket the reactor with a thorium blanket and make new uranium-233 even as we are destroying plutonium. That means that for each year we burn plutonium, we’ll make enough uranium-233 to start a new LFTR. Compared to the fast reactor approach where you’re trying to breed plutonium to build more fast breeders, and it takes 20-30 years to produce enough new fuel in a fast reactor to start another one, we won’t be using these chloride fast reactors to start other fast reactors. We’ll be using them to make the fuel to start fluoride thorium reactors that use slowed-down neutrons.

With this approach, plutonium from weapons and reactor fuel will start about 70 chloride fast reactors. Each one will make enough uranium-233 each year to start 70 new LFTRs at a gigawatt each. That means that in less than 20 years we could have 1000 LFTRs online, generating all of the energy our nation needs, all the while we’re burning down and destroying the plutonium we’ve generated over the last 60 years for weapons and from reactor operation. Compare that to the standard fast breeder approach where in 20 years the 70 fast breeders we started have generated enough new fuel for another 70 fast breeders and you can see really quickly how fast uranium-233 and slowed-down neutrons can let you move ahead and replace coal and other fossil fuels.

Remember all of that fluorine? It’s going to end up combined with lithium, beryllium, and thorium to make the fuel for the thousand LFTRs that we’re going to build. Those thousand LFTRs are going to burn about a thousand tonnes of thorium each year to make all of this energy, which is about a quarter of what one mine site in Idaho with a pit the size of a football field could produce. Again, thorium and slowed-down neutrons can let you be much more efficient in your nuclear strategy.

At the end of this effort, we will have destroyed our 100 tonnes of highly-enriched uranium from weapons. We will have destroyed our 100 tonnes of weapons-grade plutonium from decommissioned weapons. We will have destroyed the 700 tonnes of plutonium and other actinides in the spent nuclear fuel. We will have essentially eliminated the issue of spent nuclear fuel as a concern. We will have replaced the coal and gas electrical generation in the country. We will have added enough additional electrical generation to the nation’s grid to power electric cars rather than gasoline-powered ones. We’ll have cleaner air. We’ll have cleaner water. We’ll keep hundreds of billions of dollars in our country because we’ll be energy-independent. And we will have solved the energy crisis permanently.

All of this is unlocked by the fundamental properties of thorium. We can make it happen. May we have the wisdom to do so.

  • Quick Facts: [Thorium Element 90 in periodic table] [Burns up fuel much more efficiently than traditional reactors] [leaves barely any waste behind] [3 x more abundant than uranium] [MSRs run at high temp in liquid molten mixture of fluoride - heat useful for purifying water] [looks like blue water] [no pressure needed] [much safer because of passive safety] [Less expensive to build because it is smaller and easier to build with no pressurized containment needed] [can run without water therefore good for dry and remote locations][molten salt is very stable]

    See This Book Reviewed Here!!!

    BOTH BOOKS ALSO IN PAPERBACK